C-NH2 bond formation mediated by iridium complexes.

نویسندگان

  • Inmaculada Mena
  • Miguel A Casado
  • Víctor Polo
  • Pilar García-Orduña
  • Fernando J Lahoz
  • Luis A Oro
چکیده

In the presence of phosphanes (PR3 ), the amido-bridged trinuclear complex [{Ir(μ-NH2 )(tfbb)}3 ] (tfbb=tetrafluorobenzobarrelene) transforms into mononuclear discrete compounds [Ir(1,2-η(2) -4-κ-C12 H8 F4 N)(PR3 )3 ], which are the products of the CN coupling between the amido moiety and a vinylic carbon of the diolefin. An alternative synthetic approach to these species involves the reaction of the 18 e(-) complex [Ir(Cl)(tfbb)(PMePh2 )2 ] with gaseous ammonia and additional phosphane. DFT studies show that both transformations occur through nucleophilic attack. In the first case the amido moiety attacks a diolefin coordinated to a neighboring molecule following a bimolecular mechanism induced by the highly basic NH2 moiety; the second pathway involves a direct nucleophilic attack of ammonia to a coordinated tfbb molecule.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Aminocarboxylato Iridium(III) Complexes

Aminocarboxylic acids, such as 2-aminobenzoic acid, react easily with [Ir(COD)(PMe3)3]Cl, (COD=1,5-cyclooctadiene), in THF to produce hydridoaminocarboxylato iridium(III) complexes in high yields. These octahedral complexes are formed via oxidative addition reaction of the O-H bond of the carboxylic group with the central metal. The starting iridium(I) complex losses t...

متن کامل

Dehydrogenation of Alcohols Mediated by an Amido-Bridged Diiridium Complex: A Case of a Concerted Bimetallic Mechanism

Interest in catalytic functionalization of ammonia into higher-value nitrogen-containing products constitutes today a hot topic. However, productive participation of ammonia as substrate in homogeneous catalysis is normally hampered by the intrinsic high strength of the N–H bond, very difficult to activate by metal centres. Therefore, it is convenient to find alternative ways to achieve the for...

متن کامل

Direct access to parent amido complexes of rhodium and iridium through N-H activation of ammonia.

Ammonia is a low-cost and potentially valuable building block for almost every nitrogen-containing compound required by industry. There is an obvious interest in taking advantage of this chemical as feedstock in catalytic organic transformations to produce higher value products, issue that has began to be explored with some degree of success. However, most of late transition metal catalyzed rea...

متن کامل

Platinum-oxygen Bond Formation: Kinetic and Mechanistic Studies

Reaction of [PtMe(C^N)(SMe2)] (C^N = 2-phenylpyridinate (ppy); 1a, C^N = benzo[h]quinolate, (bhq); 1b) with hydrogen peroxide gives the platinum(IV) complexes trans-[PtMe(OH)2(C^N)(H2O)] (C^N = ppy; 3a, C^N = bhq, 3b) bearing platinum-oxygen bonds. The Pt(II) complexes 1a and 1b have 5dπ(Pt)→π*(C^N) MLCT band in the visible region which is used to easily follow the kinetic of its reaction with ...

متن کامل

Iridium-catalyzed borylation of arenes and heteroarenes via C–H activation*

Direct C–H borylation of aromatic compounds catalyzed by a transition-metal complex was studied as an economical protocol for the synthesis of aromatic boron derivatives. Iridium complexes generated from Ir(I) precursors and 2,2'-bipyridine ligands efficiently catalyzed the reactions of arenes and heteroarenes with bis(pinacolato)diboron or pinacolborane to produce a variety of aryland heteroar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Angewandte Chemie

دوره 53 36  شماره 

صفحات  -

تاریخ انتشار 2014